
Reappraising Domain Generalization in Neural Networks

Sarath Sivaprasad*1,2 Akshay Goindani*1 Vaibhav Garg1

Ritam Basu1 Saiteja Kosgi1 Vineet Gandhi1
1Kohli Centre on Intelligent Systems, IIIT Hyderabad 2TCS Research, Pune

{sarath.s, akshay.goindani, saiteja.k, ritam.basu}@research.iiit.ac.in

vaibhav.garg@students.iiit.ac.in, vgandhi@iiit.ac.in

Abstract

Domain Generalization (DG) is perceived as a front face
of OOD generalization. We present empirical evidence to
show that the primary reason for generalization in DG is
the presence of multiple domains while training. Further-
more, we show that methods for generalization in IID are
equally important for generalization in DG. Tailored meth-
ods fail to add performance gains in the Traditional DG
(TDG) evaluation. Our experiments prompt if TDG has out-
lived its usefulness in evaluating OOD generalization? To
further strengthen our investigation, we propose a novel
evaluation strategy, ClassWise DG (CWDG), where for each
class, we randomly select one of the domains and keep it
aside for testing. We argue that this benchmarking is closer
to human learning and relevant in real-world scenarios.
Counter-intuitively, despite being exposed to all domains
during training, CWDG is more challenging than TDG eval-
uation. While explaining the observations, our work makes a
case for more fundamental analysis around the DG problem
before exploring new ideas to tackle it.

1. Introduction

Generalization is a key goal in machine learning. Empiri-
cal results show us that sufficiently parameterized networks
can completely fit any training data in any configuration of
labels [46]. Hence, the most rudimentary notion of evalua-
tion is to measure performance on unseen Independent and
Identically Distributed (IID) data. This notion is brittle for
real-world settings; for instance, minimal perturbations can
substantially deteriorate the performance of models trained
in IID setting [14]. Significant efforts have been made to
improve the generalization of the neural network across per-
turbations [26]. However, more and more evidence is arising

*equal contribution

Photo

Cartoon
Art-Painting

Sketch

Sketch

Art-Painting

Cartoon

Photo

Domain added to training

Test domain

Figure 1. Test performance of Inception-Resnet backbone trained
on different subsets of PACS dataset. The color of the line de-
notes the domain kept out for testing. At every tick on X-axis a
new domain is added to train data. For instance, when the test
domain is ‘Cartoon’(yellow line), the model is first trained on
just ‘Sketch’(circle). In subsequent steps ‘Art-painting’(square)
and ‘Photo’(star) are added to training data. The graph shows the
increase in test performance on adding domains to train data.

that robustness from synthetic image perturbations like noise,
simulated weather artifacts, adversarial examples, etc., does
not necessarily improve performance on distribution shift
arising in real data [40]. Furthermore, performance on IID
test data does not necessarily imply that the network has
learned the expected underlying distributions [9]. Hence,
evaluating generalization across Out of Distribution Data
(OOD) is desirable for machine learning models.

Domain Generalization (DG) goes beyond perturbations
and is a common way to formally evaluate OOD general-
ization. It focuses on scenarios where target domains have
distinct characteristics but no data for training. DG aims to
extract domain-agnostic features by learning from multiple
domains, which can then be applied to an unseen domain.
For instance, learn a model using labeled data of photos,
paintings, cartoons and then apply it on sketches (traditional

1

ar
X

iv
:2

11
0.

07
98

1v
2

 [
cs

.L
G

]
 2

0
D

ec
 2

02
1

(a) TDG (b) CWDG

Figure 2. The figure shows the difference in train test split with Traditional DG (TDG) setting and ClassWise-DG (CWDG) setting. (a)
shows one of the four splits in TDG, (b) shows one train test split out of the 16384 possible samplings. The open entry in the train set of
CWDG corresponds to the entry in the test set.

DG setup is illustrated in Figure 2(a)). The motivation of
DG is to produce human-like classification/representation
models with deeper semantic sharing across domains - a
horse is a horse irrespective of its form of depiction (a photo,
cartoon, painting, or a sketch).

A myriad of inventive methods has been proposed for
Traditional Domain Generalization (TDG). Some of the no-
table efforts include reverse gradients to obtain domain ag-
nostic features [6]; kernel methods [28] to learn to map
all domains to a common representation; style transfer for
data augmentation [3]; jointly training domain agnostic and
domain-specific models [18] and inhibiting features corre-
sponding to the highest gradients in each domain [17]. Re-
cently, Gulrajani and Lopez-Paz [11] show that an Empirical
Risk Minimization (ERM) baseline gives a competent per-
formance on TDG benchmarks, and none of the tailored
methods give any clear advantage over the baseline.

In this paper, we explore the properties which are decisive
for TDG. We discover that factors that aid IID generalization
(optimization algorithm, augmentation, backbone) also play
a key role in TDG. We find that DG tailored methods add
no value over an optimally trained ERM. We observe that
generalization properties of SGD [4] hold strong in TDG,
and the robustness of a backbone in DG is proportional
to its IID generalization. Our analysis helps us achieve a
new State-Of-The-Art (SOTA) on six different DG datasets.
Moreover, since initial explorations, TDG has been evaluated
with training on multiple domains, which we uncover as
the primary contributing factor to the performance on the
unseen domain. Figure 1 shows that successively adding
newer domains to the training data significantly improves
performance on the unseen test domain.

Furthermore, as a key contribution, we propose an alter-
nate setting to evaluate the generalization of neural networks:
ClassWise-DG (CWDG). In this setting, a randomly selected
domain from each class is kept aside for testing, as illus-
trated in Figure 2(b). Overall the model sees all domains
during training, but only a subset of domains are seen for
each class. We argue that CWDG benchmarking is closer
to human learning. For example, a child in the early years
may see some objects in photos and sketches, some in paint-
ings and cartoons; but may not necessarily see all classes
in all domains. In contrast, the TDG setting assumes that
all class categories are seen in all source domains, and the
target domain is never seen (suddenly, you are exposed to
sketches one day!). Moreover, in the real world, the avail-
ability of class annotations is not uniform across domains;
therefore, performance on the CWDG benchmark will show
the model’s efficacy in leveraging different kinds of super-
vision available in the real world. Contrary to the intuitive
expectation, we observe that neural networks struggle to re-
tain their performance despite seeing all the domains during
training.

We argue that CWDG creates an incentive to learn
domain-specific features and makes generalization difficult.
In Figure 3 we show that how domain shifts across classes
can lead to shortcut learning [9]. Learning to discriminate
among domains creates a prior in CWDG, and hence learn-
ing domain-agnostic features becomes difficult. In contrast,
in TDG, since all classes see a good proportion of all do-
mains, learning domain-agnostic features is convenient for
the network. This explains the observation in [11] that why
ERM already gives robust output, which cannot be improved
upon by tailored methods. We further experiment and show

2

that using reverse gradients to learn domain-agnostic fea-
tures gives 6% performance gains in CWDG over ERM.
We believe CWDG emulates domains shifts present in real-
world datasets and is a more robust benchmark to evaluate
the ability to learn domain-agnostic features. Overall, our
work makes the following contributions:

• Our work explains the findings in [11]. We uncover why
ERM works and why other methods fail to improve. The
analysis leads to a new SOTA on six DG benchmarks.

• We propose CWDG and perform thorough benchmark-
ing using popular algorithms.

• Our analysis shows that the challenge of OOD general-
ization lies beyond TDG formulation. The distribution
shift across classes appears as the primary hurdle.

2. Related Work
We discuss the prior art in two components. We first

address the common notion of generalization in IID data.
Subsequently, we discuss the previous works on TDG and
motivate the need for the new CWDG setting.

Generalization in IID setting: Sufficiently parameterized
networks can completely fit any training data [46]. Hence,
a bare essential way to evaluate a neural network is to train
on a randomly selected portion of the data and test on the
unseen part. Popular methods like dropout [36], weight de-
cay, early stopping, and regularization techniques [8, 42]
have shown to improve this notion of generalization. It is
common wisdom that spatial transforms in image data help
improve generalization [26]. Constraining networks [2, 35]
have also shown to improve generalization in IID setting.
The optimizer also plays a role in generalization; specifically,
SGD is shown to achieve better generalization than adaptive
algorithms [44].

Recently Taori et al. [40] suggests considering general-
ization beyond IID setting with perturbations. They report
a thorough study with 204 ImageNet models, showing that
robustness from synthetic image perturbations like noise,
simulated weather artifacts, adversarial examples, etc., does
not improve the performance on distribution shift arising in
real-world data. Moreover, Recht et al. [31, 32] expose the
problems in using a specific part of IID distribution as test
data. They show a drop in performance when tested on new
test data collected from the same distribution, motivating the
evaluation beyond the IID setting.

Domain generalization: Our work focuses on the DG in
deep neural networks, and for pre-deep learning efforts, we
refer the reader to the review by Moreno et al. [27]. Fur-
thermore, we limit our discussion to DG in image classifi-
cation. TDG formulation involves learning from multiple
domains and testing on an unseen domain. TDG on im-

Train TestLabels Predictions

Dog

Elephant

Giraffe

Guitar

Horse

House

Person

Giraffe

Giraffe

Giraffe

Giraffe

Giraffe

Giraffe

Giraffe

Figure 3. The figure shows a synthetic data setting, where a domain
shift is created on a specific class: ‘Giraffe’. All train samples are
chosen from the domain ‘Art-Painting’ except the class ‘Giraffe’,
which is sampled from ‘Sketch’. At inference, ‘Sketch’ images
from across classes are predicted as ‘Giraffe’.

age classification is commonly evaluated on six datasets:
[1, 5, 10, 20, 29, 41].

Learning domain agnostic features using the TDG formu-
lation has seen significant interest in recent years. The prob-
lem has been approached from many different directions like
data augmentation [3, 45, 48], gradient manipulation [6, 17],
ensemble learning [24], and feature disentanglement [18,30].
For a comprehensive list, readers can refer to the recent sur-
veys [43,47]. It is worth noting that several of these ideas [6]
have found widespread success beyond the TDG framework.

Gulrajani and Lopez-paz [11] suggest that inconsistencies
in experimental conditions (datasets and training protocols)
render fair comparisons difficult. They propose DomainBed,
a unifying benchmark for TDG. They empirically show that
a carefully implemented ERM outperforms the state-of-the-
art in terms of average performance. A natural thought that
arises is that despite the proposition of numerous inventive
ideas for TDG, why none of them improves over the baseline
ERM. In this work, we claim that TDG is not an appropriate
formulation to measure the efficacy of a model to learn
domain agnostic features. We argue that in TDG formulation,
learning domain agnostic features is the most convenient
thing for the network, not a challenge.

Consequently, we propose CWDG, a more challenging
DG formulation, which leaves room for shortcut learning [9].
Our work interestingly contrasts with [25] which proposes
further constraints on TDG by introducing unseen classes
in the test domain. We instead relax the assumptions and
expose all domains during training.

3

Dataset # Domains Domains # Classes # Images

RMNIST [10] 6 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ 10 70000
CMNIST [1] 2 Red, Green 2 120000
DomainNet [29] 6 Clipart, Infograph, Painting, Quickdraw, Real, Sketch 345 586575
PACS [20] 4 Photo, Art-Painting, Cartoon, Sketch 7 9991
VLCS [5] 4 Caltech101, LabelMe, SUN09, VOC2007 5 10729
Office-Home [41] 4 Art, Clipart, Product, Photo 65 15558

3. Method
We follow the notations presented in [20]. We consider

S available domains containing samples from a total of C
classes. Let ci represent the class c corresponding to ith do-
main. Furthermore, let Nci be the number of labeled samples
in class c and domain i. yci(k) represents the label corre-
sponding to kth such sample and ŷci(k), the label prediction.
` is the loss computed between the true and predicted la-
bels. The objective for minimization in the TDG setting is
as follows:

argmin
Θ

1

S − 1

S∑
i=1:Si 6=Stest

1

C

∑
(ci∈C)

1

Nci

Nci∑
k=1

` (ŷci(k), yci(k)) ,

where Θ are the network parameters.
In the proposed CWDG setting, the optimization problem

is modified as follows:

argmin
Θ

1

S

S∑
i=1

1

CSi

∑
(ci∈C:ci 6=citest)

1

Nci

Nci∑
k=1

` (ŷci(k), yci(k)) .

Where, CSi
is the number of classes present in the domain

Si for train. Assume Θ∗1
is obtained post minimization in

TDG setting, and Θ∗2
is the solution obtained under CWDG.

Θ∗1
is evaluated on unseen domain Stest. On the other hand,

Θ∗2 , which has been optimized over all domains in S, is
evaluated on unseen class instances citest . The solution in
CWDG, Θ∗2

, intuitively needs to be able to discriminate
classes agnostic to which domain it appears in S, but our
empirical evidence show otherwise.

We look at the type of shift incurred in CWDG compared
to classical TDG setting following the study of datashift by
Moreno-Torres et al. [27]. They study various data shift and
broadly classify them into four different categories, namely:

• Covariate shift: Ptest(x) 6= Ptrain(x) but
Ptest(y|x) = Ptrain(y|x)

• Prior probability shift: Ptest(y) 6= Ptrain(y) but
Ptest(y|x) = Ptrain(y|x)

• Concept shift : Ptest(x) = Ptrain(x) but Ptest(y|x) 6=
Ptrain(y|x)

• Dataset shift: Ptest(x, y) 6= Ptrain(x, y) but none of
the above hold.

CWDG falls under the category of dataset shift, while
TDG formulation falls under covariate shift. Both measures
of robustness are distinct and desirable for corresponding
real-world applications.

To analyse the performance of networks in CWDG, we
use Frechet Inception Distance (FID) [15] as a measure
of distribution shift between the train and test split of the
datasets. FID measures the distance between two multino-
mial Gaussians d as,

d ((m1, C1) , (m2, C2)) =(
‖m1 −m2‖22 +Tr

(
C1 + C2 − 2 (C1C2)

1
2

)) 1
2

where d ((m1, C1) , (m2, C2)) is the Frechet distance,
m1, m2 are the means, C1 and C2 are the covariances of two
gaussian distributions, Tr denotes the trace of a matrix.

We compute the distance d between the embeddings of
the final layer of an InceptionV3 network [39] pre-trained on
ImageNet. To compute the FID score in each experimental
setting, we pass the train and test split through the pre-trained
network and calculate the distance d of the embeddings.

4. Experiments
In this section, we present our three experimental frame-

works. First, we perform an ablation study to explore the
effect of model backbone, augmentation, and optimizer in
TDG setting using PACS dataset [20]. Then we compare
our best-performing model and training strategy against
ten benchmark algorithms across six datasets from Do-
mainBed [11] in the TDG setting. In our third experiment, we
report the performance of ten DG algorithms on the CWDG
formulation of the six datasets.

4.1. Exploring effects of different modelling choices

In the ablation experiments, we use PACS [20] dataset.
Following TDG, we keep aside one domain for testing in
each fold and train on the other three. We use an oracle
for model selection. To measure the effect of each interven-
tion in the ablation, we keep all the other modeling choices

4

Adam with augmentation SGD without augmentation SGD with augmentation
Backbones Photo Sketch Art Cartoon Photo Sketch Art Cartoon Photo Sketch Art Cartoon

Alexnet 28.06 19.3 27.9 35.39 88.26 60.42 65.645 70.065 87.69 69.17 66.91 69.28
Vgg-19 BN 25.88 20.38 21.09 21.34 88.41 77.63 76.31 78.47 90.27 82.12 76.78 79.6
Resnet-18 39.95 40.02 26.8 38.42 87.96 74.38 75.7 77.38 87.34 80.29 73.64 76.91
Resnet-50 35.06 34.95 26.28 33.15 88.53 78.21 72.99 79.28 89.57 81.02 74.91 77.72

DenseNet-121 34.13 36.5 28.39 30.18 87.50 79.1 73.4 76.44 88.9 80.42 74.31 78.15
Inc-Res 53.12 52.16 37.8 50.69 96.12 81.36 84.96 83.69 95.06 87.35 88.8 84.8

Table 1. The table shows DG results on PACS and the effect of various modeling choices. The compiled results show the disparity in
accuracy between the two optimizing algorithms, the different backbone models, and augmentation. Our best-performing backbone ‘Inc-Res’
corresponds to Inception-Resnet

the same and run the experiment five times and report the
mean value. Unless specifically mentioned otherwise, the
training protocol and hyper-parameters are the same as in
DomainBed [11].

We train a simple ERM with six different back-
bones, namely: AlexNet [19], VGG-19 [34], ResNet-
18 [12], ResNet-50 [13], DenseNet-121 [16] and Inception-
Resnet [38]. We run all four folds of PACS on these back-
bones with SGD and ADAM optimizer. As the next inter-
vention, we run all the aforementioned backbones with and
without augmentations with an SGD optimizer. For augmen-
tation, we use standard image perturbations as used in [17].
We select random crops from train images and resize them
into model input size. We randomly flip half the images in
every batch horizontally (with 0.5 probability) and use color-
jitter augmentation by randomly scaling brightness, contrast,
saturation, and hue. These scales are sampled randomly from
a distribution between 0.6 and 1.4. We randomly choose im-
ages from each batch and grayscale them (with a probability
of 0.1). We normalize all images with ImageNet mean and
standard deviation.

We train each model for 30 epochs with a batch size of
32. We use a learning rate of 0.01 with no scheduler across
all the runs, except for Alexnet (learning rate of 0.001) since
it does not converge at higher values. We use ImageNet pre-
trained weights for all the backbone models and fine-tune
the last layer with a categorical-cross-entropy loss function.
We use a weight decay of 0.0005 and momentum of 0.9.

4.2. Comparisons on TDG benchmark

We compare the performance of the best model from
Section 4.1 across different datasets using DomainBed [11].
We select the backbone and the hyperparameters using one
of the datasets (PACS dataset). We use the same choices
for the other datasets. We argue that doing so reduces the
chances of overfitting the training strategy on other datasets.
We compare our best performing model with the existing
methods on six different datasets: PACS [20], VLCS [5],

Office-Home [41], DomainNet [29], CMNIST [1] and RM-
NIST [10]. The statistics of the datasets are given in Table ??.

We use the hyperparameters and random-seed used in
DomainBed to maintain uniformity of comparison. We fol-
low the augmentation strategy used in DomainBed. This
follows that MNIST datasets, namely CMNIST [1] and
RMNIST [10] are not augmented. We compare our re-
sults against popular methods, namely: C-DANN [23],
IRM [1], MLDG [21], DRO [33], MMD [22], ERM [11],
CORAL [37], Mixup [45], RSC [17], DANN [7] and
GRL [6]. Outside of DomainBed, we also use multi-branch
reverse-gradient [6] model on the Inception-ResNet back-
bone. We run these experiments five times and use and report
the mean accuracies. We use oracle for model selection.

To make the comparison of a neural network with all the
methods in DomainBed [11] more rigorous, we apply all the
methods on top of the the best performing ERM (Inception-
Resnet backbone). We then evaluate the performances in the
Domainbed style of training across the six different datasets.

4.3. Benchmarking CWDG

In this setting, we follow the CWDG formulation of the
aforementioned datasets (Section 4.2). We keep out a ran-
dom domain from each class to create a train test split. We
do this split multiple times. Results of one of the splits are
presented in Table 3. The other results are presented in the
supplementary material. We use the same augmentations and
hyper-parameters as in DomainBed. We evaluate the efficacy
of the methods specified in Section 4.2 on CWDG.

We explore the efficacy of reverse-gradient [6] in CWDG
formulation. We branch the model before the last fully con-
nected layer. One branch has four outputs (corresponding to
the four domains in the train data), and the other branch has
seven outputs (corresponding to the seven classes). We flip
the gradients flowing through the domain arm by multiplying
with a factor of -1.

5

Algorithms PACS VLCS Office-home Domain-Net CMNIST RMNIST Average
IRM 82.9 77.2 66.7 32.6 59.16 97.7 69.37
GRL 83.69 77.38 70.2 37.4 50.5 98.49 69.61
MMD 82.8 76.7 67.1 28.4 73.35 98.1 71.07
DANN 84 77.7 65.5 38.1 73.03 89.1 71.23

C-DANN 81.7 74 64.7 37.9 73.03 96.3 71.27
DRO 83.1 77.5 67.1 33.4 73.35 97.9 72.05
RSC 84.77 78.8 70.8 39.2 61.2 98.23 72.16

MLDG 82.4 77.1 67.6 41.6 71.64 98 73.05
Mixup 83.7 78.6 68.2 38.7 73.34 98.1 73.44

CORAL 83.6 77 68.6 40.2 73.35 98.1 73.47
ERM-Inc-Resnet 89.11 78.84 71.95 43.2 74.35 99.2 76.10

Table 2. Comparing ERM-Inc-Resnet with other algorithms in DomainBed. The algorithms are sorted by their average performance across
the six datasets.

Algorithms PACS VLCS Office-home Domain-Net CMNIST RMNIST Average
IRM 64.8 63.1 55.77 28.8 61.58 71.2 57.53
RSC 79.3 64.5 65.2 25.3 50.5 98.7 63.91

MMD 73.8 60.2 65.46 25.8 73.05 98.5 66.13
DANN 74.4 64.2 62.95 24.6 72.05 98.8 66.16
MLDG 73 62.97 65.87 25.73 71.93 98.5 66.3
CORAL 77.06 60.2 65.46 25.8 73.5 98.5 66.75
C-DANN 77.7 63.77 64.58 24.04 72.5 98.9 66.91

ERM-Inc-Resnet 79.6 60.86 66.1 25.8 71.15 99.8 67.21
Mixup 77.6 64.2 66.02 25.1 73.05 98.3 67.35
DRO 79.38 64.77 66.1 25.15 73.05 98.5 67.82
GRL 86.2 67.87 66.9 26.9 74.15 99.3 70.22

Table 3. Comparing the performance of different algorithms in DomainBed against Inception-Resnet-ERM and GRL(with Inception-Resnet
backbone) in CWDG setting. Algorithms are sorted by their average performance across the six datasets.

5. Results
Our method involves simply training a backbone (trained

on ImageNet) with SGD and standard data augmentation
(and nothing else!). Table 1 shows the effect of different back-
bones and motivates the use of SGD and data augmentation.
Next, we compare our plain baseline against the state-of-
the-art methods in TDG. We then report the performance of
algorithms covered in DomainBed under the CWDG setting.

5.1. Exploring effects of different modeling choices

Effect of optimizer: Table 1 compiles the accuracy of dif-
ferent backbones under SGD and ADAM optimization over
all domains in PACS. SGD outperforms ADAM by a signifi-
cant margin for a given learning rate for all the six backbones
across all domains. Comparing the average performance dif-
ference between domains, we observe that ADAM gives a
lower performance on ‘Sketch’ and ‘Art-Painting’, domains
farther from the domains the backbones were trained on (Im-
ageNet). For the ‘Art-Painting’ domain, Inception-Resnet
backbone with SGD gives more than twice the accuracy of

ADAM. Averaged over the four domains, SGD gives 89.00%
accuracy compared to 48.44% accuracy given by ADAM.
The results demonstrate that SGD has a clear advantage over
ADAM in the studied scenario. The observation may stem
from the fact that fine-tuning a large ImageNet model on
a relatively small dataset like PACS reduces to a simple
overparameterized problem. Moreover, previous work [44]
has suggested that for simple overparameterized problems,
adaptive methods can find drastically different solutions than
SGD.

Effect of augmentation: Table 1 compares the accuracy
of different backbones trained using SGD, with and without
augmentation. We observe that augmentations almost always
improve the performance of networks. For instance, with
the Inception-Resnet model, the average performance of
the model across all four domains with augmentation is
89.00%, which is higher than the average accuracy without
augmentation 86.53%.

6

Algorithms PACS VLCS Office-home CMNIST RMNIST Average
IRM 88.9 75.8 56.6 61.54 79.2 72.40
GRL 86.4 75.4 65.8 51.6 98.49 75.53

MLDG 76.4 72.6 67.6 73.4 98.1 77.62
RSC 85.87 77.8 70.8 62.5 98.23 79.04

C-DANN 85.7 75.8 66.78 74.25 97.95 80.9
MMD 88.3 78.2 67.8 73.89 98.3 81.3

CORAL 87.5 77.8 68.89 74.25 98.2 81.32
DRO 88.9 78.5 66.7 73.89 98.2 81.34

Mixup 88.8 78.7 67.8 74.2 97.89 81.48
DANN 89.0 78.7 68.8 74.25 97.8 81.77
ERM 89.11 78.84 71.95 74.35 99.2 82.7

Table 4. Comparing ERM-Inc-Resnet with other methods in DomainBed implemented with inception-Resnet backbone. The algorithms are
sorted by their average performance across the five datasets.

Effect of choice of backbone: Table 1 shows the signifi-
cance of backbone in DG. Across all domains and irrespec-
tive of augmentation and other choices, the Inception-Resnet
backbone outperforms all other backbones. Zhou et al. [47]
challenges the common perception that models that perform
on ImageNet will learn domain-generalizable features and
hence argues for DG specific technique methods. In contrast,
we observe that the better performing backbone for DG is
the better performing model on the ImageNet IID benchmark
and not necessarily the backbone with more parameters.

5.2. Comparing with baselines in TDG

In Table 2 we compare the ERM baselines against other
algorithms in DomainBed [11]. The proposed ERM base-
line with Inception-Resnet backbone (ERM-Inc-Resnet) not
only outperforms other methods on an average but also
outperforms the best performing model in every dataset.
This consistent improvement across datasets further proves
that inception-Resnet should be the preferred backbone for
DG tasks. On the PACS dataset, we get a margin of above
5% from the next best performing model. This comparison
shows that neural networks trained with a robust backbone,
augmentation, and optimizer under TDG setting do not need
any additional method to learn domain agnostic features. Fur-
thermore, Table 4 shows the comparison of ERM, with all
methods implemented in Inception-Resnet backbone. This
table further proves that none of the methods outperform
ERM despite having a robust backbone. In fact, some of
the methods simply constraint the learning, reducing test
performance. This motivates us to think if by solving deficits
of neural networks in TDG setting, are we fixing a system
that is not broken?

5.3. Benchmarking CWDG

Table 3 shows the performance of different algorithms
under DomainBed in the CWDG setting. A one-to-one com-

Backbones Our model with RSC with GRL
Resnet-18 71.295 70.42 74.6
Resnet-50 76.6 72.32 79.3
Inc-Res 79.6 78.71 86.2

Table 5. Results for CWDG on PACS dataset

parison between TDG results and CWDG is not meaningful,
but it is curious to note that despite seeing all domains dur-
ing training, the models perform worse than when tested on
an unseen domain. The drop in performance in the CWDG
setting (compared to TDG) suggests fundamental challenges
beyond seeing unseen domains. We further observe that the
idea of gradient reversal (GRL) holds much merit in the
CWDG. It is worth noting that GRL did not give any im-
provements in TDG, further motivating the need to evaluate
DG from varied perspectives.

We compare different backbones with GRL and RSC on
CWDG in Table 5. The numbers are reported as an average
over five runs, wherein every run, we sample a different
domain into the test set for each class. RSC brings down
the performance in each case. In contrast, employing GRL
improves the performance of all three backbones.

We present three analytical experiments to build further
insights on how Neural Networks learn with domains shifts.
We explore how useful the learning from each domain is
while classifying on other domains using pairwise experi-
ments. We further compare dataset shifts with test perfor-
mance, while adding domains to the training set. In the third
experiment, we make a case for going beyond distribution
shifts across train-test splits to explain OOD performance.

7

300 200 100 0
40

20

0

20

40

60

80

100

120

Ph
ot

o

Photo

150 125 100 75 50 25 0 25

25

0

25

50

75

100

125

Art

300 250 200 150 100 50 0 50

40

20

0

20

40

60

80

Cartoon

200 150 100 50 0

10

0

10

20

30

Sketch

200 150 100 50 0 50 100 150

100

75

50

25

0

25

50

75

Ar
t

150 100 50 0 50 100 150 200

150

100

50

0

50

100

250 200 150 100 50 0 50 100

80

60

40

20

0

20

40

60

80 60 40 20 0 20 40 60

30

20

10

0

10

20

30

40

50 0 50 100 150 200

80

60

40

20

0

20

40

60

Ca
rto

on

50 0 50 100 150

60

40

20

0

20

40

100 50 0 50 100 150 200 250
200

100

0

100

200

40 20 0 20 40 60

100

75

50

25

0

25

50

75

125 100 75 50 25 0 25

40

30

20

10

0

10

20

Sk
et

ch

100 80 60 40 20 0 20 40

40

30

20

10

0

10

20

30

100 50 0 50

150

100

50

0

50

200 150 100 50 0 50 100

200

150

100

50

0

50

100

0

20

40

60

80

100

Acc.

Figure 4. The color of each tile shows the accuracy of the model
trained on the domain corresponding to the row name and tested on
the domain corresponding to the column name. The plot within each
tile, shows the embeddings learned using an additional network
with a two-node bottleneck. Embeddings from different classes are
represented with different colors.

6. Analysis and Discussion

6.1. PACS vs PACS

We analyze the interplay of variances within domains
in Figure 4. We train the Inception-Resnet [38] backbone
(pre-trained on Imagenet) four times, each run corresponding
to each of the four domains in the PACS dataset. We keep
out a part of the training domain for model selection and
evaluation. We evaluate each of the four models on all four
domains using the kept out data for the domain it is trained
on and all samples from other domains. The accuracy is
indicated as the color of each tile in Figure 4.

To further investigate the efficacy of features to discrim-
inate classes in other domains, we train each of the four
models with a two-node bottleneck layer before the classi-
fication head. The embeddings obtained on the test split of
each of the sixteen pairwise experiments are plotted inside
the corresponding tiles in Figure 4. The embeddings corre-
sponding to each of the classes are plotted with a different
color.

Expectedly, the features learned from a domain are most
effective in the same domain (diagonal plots in Figure 4).
Also, from the accuracy and the separation in classes, we can
see that features learned from a domain like ‘Art-Painting’
help discriminate samples of almost all four domains. How-
ever, features learned from the ‘Sketch’ domain are not ade-
quate for discriminating samples in any other domain. Also,
the accuracy metrics of the pair-wise experiments are almost
symmetrical.

6.2. Train-Test distributions shifts

In this section, we explain the correlation between ac-
curacy of models and the corresponding distribution shift

Photo

Cartoon
Art-Painting

Sketch

Sketch

Art-Painting

Cartoon

Photo

Domain added to training

Test domain

Figure 5. The graph shows the FID distance between the train and
test data on adding domains to train data. The graph contrasts to
Figure 1, showing that adding domains to train data decreases the
FID distance.

(FID distance) between train and test splits. We freeze the
test set and observe the performance while varying the train-
ing set. For each run, we report the test accuracy and the
corresponding FID distance.

The experiments are performed using the PACS dataset.
We start with a single domain each in the train and test splits
and subsequently keep adding the remaining domains to the
train set (until there are all but the test domain in the train
data). For instance, we start with the ‘Sketch’ domain as test
and ‘Photo’ as train. We add ‘Art-Painting’ and ‘Cartoon’
to the train data in the subsequent two steps. We compare
test accuracy (on ‘Sketch’) between the three runs. To make
a comparison unbiased of the train data size, we randomly
sub-sample after adding each domain such that the size of
train data is the same for all experiments for each iteration.
We perform this experiment with all four domains as test
data with a randomly selected order of adding domains.

Figure 1 presents the obtained results. Despite some do-
mains being poor at contributing discriminative features to
other domains (as seen in Section 6.1), we find a significant
advantage of having multiple domains in the training set.
The results clearly show that adding domains to the train
data, however different from the test domain, aid domain
agnostic feature learning and improves test performance.

Comparing Figure 1 with Figure 5, we can see that adding
a new domain to the train data decreases the FID distance
between the train and test splits and increases the accuracy
of the trained model. The experiment empirically suggests
that in the TDG formulation, the accuracy of the model is
entirely explained by the distribution shift between the train
and test splits (Figure 5).

6.3. Classwise priors

This section demonstrates that dataset shifts alone can-
not explain OOD generalization, and class-wise distribution
shifts also pose a challenge. We formulate a synthetic set-

8

ting using two domains (‘Art-Painting’ and Sketch’) from
the PACS dataset. For the first model, the training data is
created with a domain shift on a specific class. All train
samples are chosen from the domain ‘Art-Painting’ except
the class ‘Giraffe,’ which is sampled from ‘Sketch’ (as illus-
trated in Figure 3). We then train a second network using all
classes from a single domain (‘Art-Painting’). Both models
are evaluated on the ‘Sketch’ domain. We use Frechet Incep-
tion Distance (FID) [15] to measure the dataset shift among
train-test splits in the two settings.

When the training data for all the classes are picked from
a single domain (‘Art-Painting’), we get a test performance
of 61.67% on the test data (‘Sketch’). By replacing a single
class (‘Giraffe’) in training from the ‘Sketch’ domain, all
test images are predicted as Giraffe (the accuracy drops to
13%, the fraction of samples from the class Giraffe). The
observation is intuitive as the network fits the easier discrim-
inative variances that differentiate domains and use them to
classify.

Unlike in typical TDG setup, this behavior cannot be
explained by distribution shifts among the train and test split
(Figure 5). The train data is now closer to test data as they
share samples from a class. The FID score of train and test
data in the first setting is 147.50, and the second setting is
95.96. The performance drops despite the reduction in the
dataset shift.

The above observation shows that there are factors other
than distribution shifts that determine the OOD generaliza-
tion of neural networks. The tendency of a network to fit
the domain-specific variances which are used to distinguish
classes in train data is caused by the priors in train data
(different domains see a different subset of classes). The
model’s ability to escape fitting such prior can be evaluated
by extending this synthetic experiment, which precisely mo-
tivates the need for CWDG evaluation. In the CWDG setting,
different seeds for sampling domains from classes to create
test data can evaluate the different variances that a model
fits.

7. Conclusion
In this work, we find that a carefully trained ERM out-

performs all existing state-of-the-art methods on six stan-
dard datasets when evaluated in traditional DG setting. The
findings are similar to [11]. However, we disentangle the
performance of ERM and discuss the role of backbone,
data augmentation, and optimization algorithm. We hope
the analysis will help better plan future experiments on DG.
We introduce a novel evaluation benchmark called CWDG
benchmark, which can be constructed using any existing DG
dataset by modifying the train and test split. The benchmark
aims to extend the horizon of evaluation of DG in terms of
dataset shifts. Contrasting TDG with CWDG, we explain the
two previously counter-intuitive observations: (a) none of

the inventive methods improve DG in neural networks, and
(b) despite seeing all domains in train data, networks fail
to perform in CWDG setting. Unlike TDG, in the CWDG
framework, the network, if left to its own devices, will learn
domain-specific features. Through a detailed analysis, we
show that the performance of networks on test data cannot
be fully explained by the dataset shift between train and
test data but also by the priors introduced by distribution
shift across classes. We thoroughly evaluate the proposed
benchmark and find that, unlike TDG, classical methods like
reverse gradients aid performance when added on various
backbones in the CWDG setup.

References
[1] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David

Lopez-Paz. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019. 3, 4, 5

[2] Francis Bach. Breaking the curse of dimensionality with
convex neural networks. The Journal of Machine Learning
Research, 18(1):629–681, 2017. 3

[3] Francesco Cappio Borlino, Antonio D’Innocente, and Tatiana
Tommasi. Rethinking domain generalization baselines. In
2020 25th International Conference on Pattern Recognition
(ICPR), pages 9227–9233. IEEE, 2021. 2, 3

[4] P. Chaudhari, A. Choromanska, S. Soatto, and Y. LeCun.
Entropy-sgd: Biasing gradient descent into wide valleys.
arXiv preprint arXiv:1611.01838, 2016. 2

[5] Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased met-
ric learning: On the utilization of multiple datasets and web
images for softening bias. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1657–1664,
2013. 3, 4, 5

[6] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In International conference
on machine learning, pages 1180–1189. PMLR, 2015. 2, 3, 5

[7] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal
Germain, Hugo Larochelle, François Laviolette, Mario Marc-
hand, and Victor Lempitsky. Domain-adversarial training of
neural networks. The journal of machine learning research,
17(1):2096–2030, 2016. 5

[8] Xavier Gastaldi. Shake-shake regularization. arXiv preprint
arXiv:1705.07485, 2017. 3

[9] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis,
Richard Zemel, Wieland Brendel, Matthias Bethge, and Fe-
lix A Wichmann. Shortcut learning in deep neural networks.
Nature Machine Intelligence, 2(11):665–673, 2020. 1, 2, 3

[10] Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, and
David Balduzzi. Domain generalization for object recognition
with multi-task autoencoders. In Proceedings of the IEEE
international conference on computer vision, pages 2551–
2559, 2015. 3, 4, 5

[11] Ishaan Gulrajani and David Lopez-Paz. In search of lost
domain generalization. arXiv preprint arXiv:2007.01434,
2020. 2, 3, 4, 5, 7, 9

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-

9

ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European
conference on computer vision, pages 630–645. Springer,
2016. 5

[14] Dan Hendrycks and Thomas G Dietterich. Benchmarking
neural network robustness to common corruptions and surface
variations. arXiv preprint arXiv:1807.01697, 2018. 1

[15] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium.
Advances in neural information processing systems, 30, 2017.
4, 9

[16] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4700–4708, 2017. 5

[17] Zeyi Huang, Haohan Wang, Eric P Xing, and Dong
Huang. Self-challenging improves cross-domain general-
ization. ECCV, 2020. 2, 3, 5

[18] Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz, Alexei A
Efros, and Antonio Torralba. Undoing the damage of dataset
bias. In European Conference on Computer Vision, pages
158–171. Springer, 2012. 2, 3

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
Advances in neural information processing systems, 25:1097–
1105, 2012. 5

[20] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Deeper, broader and artier domain generaliza-
tion. In Proceedings of the IEEE international conference on
computer vision, pages 5542–5550, 2017. 3, 4, 5, 12

[21] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Learning to generalize: Meta-learning for do-
main generalization. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018. 5

[22] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot.
Domain generalization with adversarial feature learning. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5400–5409, 2018. 5

[23] Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang
Liu, Kun Zhang, and Dacheng Tao. Deep domain gener-
alization via conditional invariant adversarial networks. In
Proceedings of the European Conference on Computer Vision
(ECCV), pages 624–639, 2018. 5

[24] Massimiliano Mancini, Samuel Rota Bulo, Barbara Caputo,
and Elisa Ricci. Best sources forward: domain generalization
through source-specific nets. In 2018 25th IEEE international
conference on image processing (ICIP), pages 1353–1357.
IEEE, 2018. 3

[25] Udit Maniyar, Aniket Anand Deshmukh, Urun Dogan, Vi-
neeth N Balasubramanian, et al. Zero shot domain general-
ization. arXiv preprint arXiv:2008.07443, 2020. 3

[26] Agnieszka Mikołajczyk and Michał Grochowski. Data aug-
mentation for improving deep learning in image classification
problem. In 2018 international interdisciplinary PhD work-
shop (IIPhDW), pages 117–122. IEEE, 2018. 1, 3

[27] Jose G Moreno-Torres, Troy Raeder, Rocı́o Alaiz-Rodrı́guez,
Nitesh V Chawla, and Francisco Herrera. A unifying view on
dataset shift in classification. Pattern recognition, 45(1):521–
530, 2012. 3, 4

[28] Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf.
Domain generalization via invariant feature representation. In
International Conference on Machine Learning, pages 10–18.
PMLR, 2013. 2

[29] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1406–1415,
2019. 3, 4, 5

[30] Vihari Piratla, Praneeth Netrapalli, and Sunita Sarawagi. Ef-
ficient domain generalization via common-specific low-rank
decomposition. In International Conference on Machine
Learning, pages 7728–7738. PMLR, 2020. 3

[31] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do cifar-10 classifiers generalize to cifar-
10? arXiv preprint arXiv:1806.00451, 2018. 3

[32] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do imagenet classifiers generalize to im-
agenet? In International Conference on Machine Learning,
pages 5389–5400. PMLR, 2019. 3

[33] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and
Percy Liang. Distributionally robust neural networks for
group shifts: On the importance of regularization for worst-
case generalization. arXiv preprint arXiv:1911.08731, 2019.
5

[34] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 5

[35] Sarath Sivaprasad, Ankur Singh, Naresh Manwani, and Vineet
Gandhi. The curious case of convex neural networks. arXiv
preprint arXiv:2006.05103, 2020. 3

[36] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014. 3

[37] Baochen Sun and Kate Saenko. Deep coral: Correlation align-
ment for deep domain adaptation. In European conference on
computer vision, pages 443–450. Springer, 2016. 5

[38] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and
Alexander Alemi. Inception-v4, inception-resnet and the
impact of residual connections on learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 31,
2017. 5, 8, 12

[39] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
2818–2826, 2016. 4

[40] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini,
Benjamin Recht, and Ludwig Schmidt. Measuring robustness
to natural distribution shifts in image classification. arXiv
preprint arXiv:2007.00644, 2020. 1, 3

[41] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for

10

unsupervised domain adaptation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
5018–5027, 2017. 3, 4, 5

[42] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob
Fergus. Regularization of neural networks using dropconnect.
In International conference on machine learning, pages 1058–
1066. PMLR, 2013. 3

[43] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang,
Wenjun Zeng, and Tao Qin. Generalizing to unseen do-
mains: A survey on domain generalization. arXiv preprint
arXiv:2103.03097, 2021. 3

[44] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nathan
Srebro, and Benjamin Recht. The marginal value of adap-
tive gradient methods in machine learning. arXiv preprint
arXiv:1705.08292, 2017. 3, 6

[45] Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie
Wang, Qi Tian, and Wenjun Zhang. Adversarial domain
adaptation with domain mixup. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 6502–
6509, 2020. 3, 5

[46] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht,
and Oriol Vinyals. Understanding deep learning requires
rethinking generalization. arXiv preprint arXiv:1611.03530,
2016. 1, 3

[47] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and
Chen Change Loy. Domain generalization: A survey. arXiv
preprint arXiv:2103.02503, 2021. 3, 7

[48] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Do-
main generalization with mixstyle. ICLR, 2021. 3

11

A. Appendix
In this document we present the supplementary materials

to support the main text. Here we present our two discussions.
First section shows the results of different seeds for train test
split in CWDG. In the subsequent section we discuss the
challenge in model selection in DG.

B. Different seeds for CWDG
In this section we present results for the different train

test splits in CWDG setting of the PACS dataset. We ob-
serve comparable performance across the different seeds of
CWDG(Table 6). Each column in the table correspond to
one run and the last row in each column shows the accu-
racy of that run. That is, each row correspond to a class and
each element shows the domain kept out for the particular
class. The first column shows the split used in the main text.
The accuracies shows that as long as the domains are evenly
spread such that there is a clear prior in the train split the
performance of neural network stays signficantly below the
TDG setting.

C. Model selection in DG
In the TDG setting, model selection is traditionally done

using the test data (the entirety of the unseen domain). How-
ever, the formulation of DG implies that the test domain is
not known during training. Hence, using an oracle for model
selection is not appropriate in the strict sense. To further
analyze the challenge in model selection in the TDG setting,
we contrast the best and worst models (based on their test
performance), picked after the training saturates (the loss
curve saturates).

We run Inception-Resnet-ERM [38] in the TDG setting
of the PACS [20] dataset. For each run, we keep out one
domain for test. We also create a validation set by randomly
sampling 5% data from each of the three training domains
and monitor the model performance on this validation set
after each training step. We select the best-performing model
on this validation set. We report the accuracy of this model
on the test domain (Asel). We also report the performance
of the model selected by an oracle for each run as Amax

(directly using test data for validation). Amin is the accuracy
of the model that gives the lowest test performance once the
training accuracy saturates. We report Amax, Amin and Asel

with all four folds of PACS data.
From Table 7 we can see that model selection in the

TDG setting is not trivial. Performance on a validation set
(sampled from train split) does not guarantee performance on
the unseen domain. To evaluate the possible model selection
for the CWDG setting, we run Inception-Resnet-ERM in
the CWDG setting of the PACS dataset. The Asel, Amax

and Amin value for the CWDG setting are 79.1%, 79.4%
and 66.3% respectively. The difference between the Amax

Classes Domain Domain Domain Domain Domain
Guitar Photo Art Cartoon Sketch Art
Person Photo Cartoon Art Photo Cartoon
Horse Cartoon Sketch Cartoon Art Photo

Elephant Sketch Photo Art Sketch Art
Dog Photo Art Sketch Cartoon Cartoon

Giraffe Art Photo Cartoon Art Photo
House Cartoon Cartoon Photo Sketch Sketch

Accuracy 79.6 79.38 78.81 79.12 79.18

Table 6. performance of NN on different train test splits in CWDG
setting. Last row of each column shows results of one run and
each row of the column corresponds to the domain kept out for the
corresponding class.

Train domains Test domain Amin Amax Asel

SAC P 94.01 96.4 96.3
PSC A 78.7 86.3 84
PAS C 81.1 87.8 83
PAC S 64.96 85.09 83.2

Table 7. Model selection in TDG

and Amin in the CWDG setting is higher than the average
difference in the TDG setting.

12

	1 . Introduction
	2 . Related Work
	3 . Method
	4 . Experiments
	4.1 . Exploring effects of different modelling choices
	4.2 . Comparisons on TDG benchmark
	4.3 . Benchmarking CWDG

	5 . Results
	5.1 . Exploring effects of different modeling choices
	5.2 . Comparing with baselines in TDG
	5.3 . Benchmarking CWDG

	6 . Analysis and Discussion
	6.1 . PACS vs PACS
	6.2 . Train-Test distributions shifts
	6.3 . Classwise priors

	7 . Conclusion
	A . Appendix
	B . Different seeds for CWDG
	C . Model selection in DG

